Efficient Divide-And-Conquer Classification Based on Feature-Space Decomposition

نویسندگان

  • Qi Guo
  • Bo-Wei Chen
  • Feng Jiang
  • Xiangyang Ji
  • Sun-Yuan Kung
چکیده

This study presents a divide-and-conquer (DC) approach based on feature space decomposition for classification. When large-scale datasets are present, typical approaches usually employed truncated kernel methods on the feature space or DC approaches on the sample space. However, this did not guarantee separability between classes, owing to overfitting. To overcome such problems, this work proposes a novel DC approach on feature spaces consisting of three steps. Firstly, we divide the feature space into several subspaces using the decomposition method proposed in this paper. Subsequently, these feature subspaces are sent into individual local classifiers for training. Finally, the outcomes of local classifiers are fused together to generate the final classification results. Experiments on large-scale datasets are carried out for performance evaluation. The results show that the error rates of the proposed DC method decreased comparing with the state-of-the-art fast SVM solvers, e.g., reducing error rates by 10.53% and 7.53% on RCV1 and covtype datasets respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Vibration Analysis of Repetitive Structures using Decomposition, and Divide-Conquer Methods

This paper consists of three sections. In the first section an efficient method is used for decomposition of the canonical matrices associated with repetitive structures. to this end, cylindrical coordinate system, as well as a special numbering scheme were employed. In the second section, divide and conquer method have been used for eigensolution of these structures, where the matrices are in ...

متن کامل

Dense Disparity Estimation with a Divide-and-Conquer Disparity Space Image Technique

A new divide-and-conquer technique for disparity estimation is proposed in this paper. This technique performs feature matching following the high confidence first principle, starting with the strongest feature point in the stereo pair of scanlines. Once the first matching pair is established, the ordering constraint in disparity estimation allows the original intra-scanline matching problem to...

متن کامل

A Divide-and-Conquer Method for the Takagi Factorization

This paper presents a divide-and-conquer method for computing the Takagi factorization, or symmetric singular value decomposition, of a complex symmetric and tridiagonal matrix. An analysis of accuracy shows that our method produces accurate Takagi values and orthogonal Takagi vectors. Our preliminary numerical experiments have confirmed our analysis and demonstrated that our divide-and-conquer...

متن کامل

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD

Spectral divide and conquer algorithms solve the eigenvalue problem by recursively computing an invariant subspace for a subset of the spectrum and using it to decouple the problem into two smaller subproblems. A number of such algorithms have been developed over the last forty years, often motivated by parallel computing and, most recently, with the aim of achieving minimal communication costs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.07584  شماره 

صفحات  -

تاریخ انتشار 2014